Discussion Problems for Math 180

Tuesday, January 19, 2015

Review

- 1. Write formulas for $\sin(\alpha + \beta)$ and $\cos(\alpha + \beta)$ in terms of $\sin(\alpha)$, $\cos(\alpha)$, $\sin(\beta)$, and $\cos(\beta)$.
- 2. Expand $(2x 1)^3$.
- 3. Consider the equation

$$x^2 + y^2 - 2x + 6y - 6 = 0$$

The graph of this equation is a circle. Where is this circle's center, and what is its radius?

This time

- 4. Determine $\lim_{x \to 3} \frac{x^2 x 6}{x 3}.$
- 5. Recall that the *absolute value* of a number x, denoted |x|, is defined to be:

$$|x| = \begin{cases} x & \text{if } x \ge 0, \\ -x & \text{if } x < 0. \end{cases}$$

So for instance we have |7| = 7, |0| = 0, and |-2| = 2. Determine

$$\lim_{x \to 0^-} \frac{|x|}{x}, \qquad \lim_{x \to 0^+} \frac{|x|}{x}, \qquad \text{and} \qquad \lim_{x \to 0} \frac{|x|}{x},$$

assuming they exist.

- 6. Consider the function $s(t) = 1 + \sqrt{t}$.
 - (a) What is the average rate of change of s(t) on the interval [1, 4]?
 - (b) ... on the interval $\left[1, \frac{9}{4}\right]$?
 - (c) ... on the interval [1, 1+h]?
 - (d) Can you use your answer to part (c) to speculate as to the instantaneous rate of change of s(t) at t = 1? (This will probably require you to do some algebra.)